

Bioinformatics Recipes: Reproducible Data Analysis

Bioinformatics Recipes is a Python [http://www.python.org/] and Django [http://www.djangoproject.com/] based
data analysis platform.

It is a simple, generic, flexible and extensible software that connects computational experts with end users.

 FAQ - Frequently Asked Questions

FAQ - Frequently Asked Questions

Answers to reviewers

We created this section to answer questions reviewers posed while reviewing our scientific publication.

Who can run a recipe?

To run a recipe, the recipe must be authorized, and the user must have trusted designation.

What is an authorized recipe?

Since a recipe may contain shell commands and other code, security checks are needed to avoid the misuse of computational resources. Every new recipe starts in a so-called pending authorization state, displayed with an orange ribbon. A recipe with pending authorization cannot be executed on the website, but it may be inspected, viewed, shared, or downloaded.

[image: ../_images/authorization-pending.png]

A user with administrative privileges (an administrator) must approve a recipe in the recipe edit window for the recipe to become executable within the website. A green ribbon decorates authorized recipes.

[image: ../_images/authorization-valid.png]

Who is a trusted user?

Each user has a designation: trusted or visitor that controls their ability to run recipes. only users with trusted designation may run approved recipes.

How do I become a trusted user?

The site administrators can change the designation of any user.

The restrictions that we have in place provide high granularity control of the computational resources.

The owner of the site decides which users and which recipes gain the privileges to use the computational resources. Other groups running the Recipes software may set up their system in a manner to automatically trust every new user that signs up, and they may also choose to approve every recipe that is created automatically.

How can I tell if I am a trusted user?

Users can find out what their designation is by looking at their user name in the menubar.

[image: ../_images/user-menu-item.png]

Each type of user gets different icons. These icons are used to indicate their designation.

[image: ../_images/user-icon-labels.png]

Will this software run on my machine?

The software was designed with decentralization in mind. The software runs on any operating system: Linux, macOS and Windows 10 (with Linux Subsystem), and on any hardware that supports Python. We routinely run the software on a MacBook Air laptop, on a single computer serving a lab, and on a high-performance multicore server.

Installation takes little more than minutes and requires no special software, just support for the Python programming language. We do envision different groups running their personalized instances of the software to serve local needs.

Is the software useful in bioinformatics education?

Even though initially the platform was designed to provide bioinformatics support to our biologist collaborators, we have found that the use of recipes integrates exceedingly well within bioinformatics curricula.

Specifically, when covering more advanced topics, educators typically present a series of commands that demonstrate a chain of data analysis steps. Currently, there is no straightforward way to publish both the code and the results, all in one location. We can use say GitHub to publish code, but we can’t use GitHub to execute the code, and we can’t use GitHub to store large datasets either.

In contrast, when using Bioinformatics Recipes, students can see both the code and all the files and results generated while running the code. In addition, they can also view results generated with different runtime parameters; all results are linked to the recipe that produced them.

Finally, students can readily copy the recipe over to their projects, make changes to it and see the results of their changes, all in the same interface. Then they can download the recipes onto their systems and run the recipe within their environments.

The software seems conceptually most similar to Galaxy, but how does it differ?

When compared to Galaxy, the Recipes framework presents several fundamental differences in its operating principles:

	The code downloaded from the site can be run on any other computer (that has the software installed) and will produce the same output as seen via the web interface.

	A Galaxy analysis only runs inside the Galaxy software. Recipes are designed to be shared and expanded upon by various users.

	Users may create different interfaces for recipes copied from someone else. The end-user cannot change interfaces in Galaxy.

	The framework is also a data analysis know-how, social interaction, and training material distribution framework.

What are the advantages of the recipes over Galaxy?

One significant advantage, in our opinion, is the independence of the method from the platform.

A bioinformatics recipe is an independent piece of code that educates and trains bioinformatician how to perform the analysis themselves on any computational platform. The code may be run either on the Recipes website or on any other computational infrastructure. The code obtained from recipes is identical to the code a bioinformatician would develop at the command line.

Additionally, the platform also serves as a knowledge distribution. Users can build upon each others’ know-how and expertise. A user may take an existing multistage analysis and add/remove/customize that analysis for their needs.

If you have a local Galaxy server and a local Recipe instance - what functional differences do users see?

It is possible to set up recipes that look and behave like tools in Galaxy. For example, if one were to wrap individual tools into recipes, then from the usability perspective, Galaxy and Recipes would be very similar.

In that sense, the Recipes website is a superset of some of Galaxy’s functionality. Let us point out that the described approach is not how we envision using the Recipes. We advocate building pipelines rather than running separate tools, a strategy that is not directly applicable in Galaxy.

Finally, users may also choose to build different interfaces for the same data analysis pipeline. Users may choose to customize additional parameters. For example, suppose a user publishes a recipe that runs a short read aligner with default settings on a hardcoded fraction (say 25%) of a data:

[image: ../_images/interface-state1.png]

Another user may take the same recipe, keep the same code for it, but create a different interface. They may choose to expose the subsampling percentage as a parameter:

[image: ../_images/interface-state2.png]

By building on the work of another scientist, the user was able to create another pipeline, that now offers the extra functionality that they needed.

How does the performance compare?

Our framework uses Python 3 and was built with the Django [https://www.djangoproject.com/] application server, a well-documented platform with extensive use in the information technology industry. Django runs platforms such as Pinterest, Instagram, and many others. Django [https://www.djangoproject.com/] as an application development platform is well documented. Knowing Django is also a valuable skill that adds to the marketability of bioinformaticians.

When it comes to the performance of the analyses themselves, these depend on the choice of methods and on the infrastructure that runs the server.

This application is designed to serve individual groups, but on what scale?

Django, the application server that our application uses has wide acceptance in the information technology industry. We believe that the software can be made to scale up to support computing at a supercomputer scale.

Our current focus, based on the priorities of the funding that we have received, was to develop a system that serves groups consisting of dozens of bioinformaticians interacting with hundreds of end-users.

Note how the limitations would occur only at the level of running simultaneous analyses. There are no constraints for the number of users that can access/read/share/copy/customize/download recipes. Hundreds of thousands of users could be browsing the recipes with millions of page views every month.

What are the minimum requirements for installing the web application?

The bioinformatics recipes software itself has extremely-low memory and CPU overhead. We estimate a few hundred megabytes and less than 1% CPU utilization.

Of course, when we run an analysis, the resource utilization depends on the tasks in the processes that are employed - what is important to note is that our software imposes minimal overhead.

Where (and how) recipes actually run when you execute them through the web application?

The recipes are currently executed on the same platform that runs the webserver. Since the service itself has minimal overhead, the entire computational infrastructure is available for computation.

The Recipes web application comes with a built-in job queuing system that can be customized for a desired amount of parallelism. Site owners can set up more or fewer simultaneous job execution strategies depending on their computational resources.

The architecture of the server is modular. We do foresee adding a job runner that integrates with job queuing systems like PBS or SLURM.

How are new recipes added to the system?

Recipes get created in two ways: either from scratch by selecting the “Create recipe” button or by “copying” or “cloning” existing recipes. We describe the processes in more detail in other answers in this FAQ.

How do you standardise the way the recipes are created?

The problem of standardization is essential yet somewhat of a challenge to implement in a way that is not overbearing and limiting while maintaining utility to the users.

We have chosen the model of cloning and copying as described below, but we are open to suggestions from the community and may revisit the implementation later.

What is a “cloned” recipe?

When pasting a copied recipe, we may paste it as a clone.

[image: ../_images/paste-clone.png]

A cloned recipe remains in sync with the original recipe that it was cloned from. Clones cannot be changed and track the original recipe. A change to the original recipe will immediately be reflected in all the clones. The purpose of a cloned recipe is to ensure that a recipe is the same across multiple projects and individuals.

What is a “copied” recipe?

When pasting a copied recipe we may paste it as a new recipe.

[image: ../_images/paste-new.png]

Another method for duplicating a recipe is to copy then paste it as a new recipe. A copied recipe is a new, original recipe filled with the content from an existing recipe.

When a recipe is pasted as new, the provenance to the original recipe is not maintained. It becomes the responsibility of the author of the recipe to maintain the relevant information in the documentation of the recipe.

What conventions should be followed? How should they be documented? What is the minimum amount of provenance that the scripts should produce? How should that be presented to the users?

Determining the appropriate levels of documentation and provenance is a difficult question that we still debate and discuss.

We would like to avoid being either too lax or too stringent. The concepts that we popularize in this platform are new; the approach is different from past models.

We do plan to evolve our views as needed. Currently, we chose to approve only the recipes where the documentation is appropriate, and provenance is properly noted. Hence the “approved” state of a recipe is a manually curated process that indicates a higher level of standard. We hope that with time, as

 Installation

Installation

The code in Biostar Recipes requires Python 3.6 [https://www.python.org/] or above.

Our installation instructions rely on conda [https://conda.io/docs/] though other alternatives for managing python environments are equally viable.

Create a virtual environment.
conda create -y --name engine python=3.6

Activate the python environment.
conda activate engine

Clone the source server code and the recipe code.
git clone https://github.com/ialbert/biostar-central.git

Switch to the biostar-central directory.
cd biostar-central

Install server dependencies.
pip install -r conf/requirements.txt

The installation is now complete. All server management commands are run through make by running one or more make tasks.
For example to test the recipes app run:

make recipes test

Running a Demo

To run the demonstration version of the recipes app execute:

make recipes demo

Visit http://127.0.0.1:8000/ to view the site.

Initialize Recipes

Activate the engine virtual enviorment.

conda activate engine

Migrate the recipes app by executing the command:

python manage.py migrate --settings biostar.recipes.settings

Collect static files for the recipes app by executing the command:

python manage.py collectstatic --noinput -v 0 --settings biostar.recipes.settings

There is a Makefile command that migrates and collects static files in one shot.

make recipes init # Migrate and collect static files.

A database has now been created and the static files can be found in biostar-central/export/static/

To ensure installation and migration was successful, run a test by executing the command:

make recipes test # Run tests.

To populate the database with random data run:

make recipes startup

Start Server

Activate the engine virtual enviorment:

$ conda activate engine

Start a local server:

make recipes serve # Start local server

The site is now available at http://127.0.0.1:8000/.

When the site initializes the admin username and password are using the ADMINS and the ADMIN_PASSWORD settings in biostar/acccounts/settings.py.

By default both the admin login name and the default admin password are set to

admin@localhost

The Django admin can be found at http://127.0.0.1:8000/accounts/admin/.

Customize Settings

DO NOT add your custom settings into the public codebase!

The proper practice is to create a separate, independent settings file, then, within that file import all default settings. Finally override the fields that you wish to customize in your settings file. For example
create the my_settings.py then add into it:

Import all default settings.
from biostar.recipes.settings import *

Now override the settings you wish to customize.
ADMIN_PASSWORD = "foopass"

Apply this settings file with

python manage.py runserver --settings my_settings.py

Consult the Django documentation [https://www.djangoproject.com/] for details.

Directory Structure

Each project has a physical directory associated on the system located on the system.

	Projects directory

	Each project has a directory with the data associated.

	Results directory

	Location where the results of a recipe run are stored.

	Table of contents directory

	Contains table of content files for every data.

These directories all found in the media directory found in the settings.py under MEDIA_ROOT. The general structure is:

media/
 projects/
 ...
 jobs/
 ...
 tocs/
 ...

Deploying Site

The software follows the recommended practices for developing and deploying Django web applications [https://www.djangoproject.com/] .

The Django documentation [https://www.djangoproject.com/] contains a wealth of information on the alternative ways to deploy the site on different infrastructure.

Within this setup we recommend the [uwsgi][uwsgi] based deployment.

 Projects

Projects

The platform is project based. Each project is a collection of data, recipes and results.

Thus each project has three distinct sections:

	Data - the input files.

	Recipes - the code that processes the data.

	Results - the directory that contains the resulting files of applying the recipe to data.

[image: ../_images/project-info-view.png]

Project Privacy

Within the management interface, all content is grouped into projects that may have public or private visibility.
Content stored in public projects is readable without restrictions.
Private projects will restrict access to members only.

[image: ../_images/project-privacy-label.png]

	Public - viewable to everyone

	Private - viewable to collaborators

	Sharable - actively shared amongst a set of users

Create a Project

Click on the New Project tab circled on the right.

[image: ../_images/new-project.png]

This will bring you to a form to fill in the name, privacy, information, etc…

[image: ../_images/project-create-form.png]

Project Access

The web application provides a transparent and consistent framework to conduct analyses that can be shared among collaborators or with the public.

Recipes, data and results can be copied across projects, users may create new projects and may allow others (or the public) to access the contents of a project.

Access level and their respective permissions are:

Public:

	Clone and copy recipes.

	Read and copy data.

	Read and copy results.

Read:

	Clone and copy recipes.

	Read and copy data.

	Read and copy results.

	Create and edit their own recipes.

	Trusted users : can run recipes.

Users without read access are informed of their restrictions when trying to create a recipe.

Trusted users without read access to a recipe are also informed of their restrictions when trying to run it.

Share:

	Includes all read access permissions.

	Activated using a sharable project link

Write:

	Includes all read access permissions.

	Can upload data

	Can delete objects from project.

	Can edit all recipes in the project.

	Add or remove collaborators to the project

Users that try to edit a recipe without write access are informed of their limitations in this project with:

[image: ../_images/project-recipe-write-msg.png]

Users without write access that try to upload data or delete objects are informed of their restrictions using a message.

[image: ../_images/project-write-msg.png]

Granting Access

Click on a project and open the first tab.

Click on the middle button labeled Manage Access
[image: ../_images/manage-access-button.png]

Search for users using their username, uid, or name. You can select their
[image: ../_images/results.png]

Data

Data may be uploaded or may be linked directly from a hard drive or from a mounted filesystem, thus avoiding copying and transferring large datasets over the web.For recipes that connect to the internet to download data, for example when downloading from the Short Read Archive the data does not need to be already present in the local server.

Notably the concept of “data” in our system is broader and more generic than on a typical file system.
In our software “data” may be a single file, it may be a compressed archive containing several files or it may be a path to a directory that contains any number of files as well as other subdirectories.
The programming interfaces for recipes can handle directories transparently and make it possible to run the same recipes that one would use for a single file on all files of an entire directory.

Data Types

Data types are labels (tags) attached to each data that help filtering them in dropdown menus. More than one data type may be listed as comma separated values.
The data types may be any word (though using well recognized names: BED, GFF is recommended).

[image: ../_images/data-type.png]

Upload Data

Data can be added multiple ways.

Web interface options:

	Upload a file

	Write text

	Import directory

Open the Project tab inside of a project.

Then click on the Add Data button

This opens another a form with two options.

1 . Upload a file - Comes with size restrictions that can be found in the settings.py

[image: ../_images/upload.png]

2 . Write text - 10k character limit
[image: ../_images/write.png]

Import Directory

Admin, staff, and trusted users can see an extra tab labeled Import Data

 Recipes

Recipes

Recipe Ingredients

Each recipe is built from two ingredients:

	The interface specification file.

	The template specification file.

The interface will specify the value of the parameters that get substituted into the template.

The template contains the commands that need to be executed. The template will have
placeholders for the parameter values that the user will need to enter in the interface.

The interface + template will generate a script that the site can execute.

The software will generate an web interface for each parameter specified in the interface. It is this interface where users are able to select the values that their recipe needs to operate.

A recipe consists of a “TOML definition file” and a “script template”.

The simplest TOML definition file is an empty file and a simple script template might contain just:

echo 'Hello World!'

The Results are created by applying a Recipe on Data.

Create a Recipe

Creating a recipe can be done using the command line or web interface.

Web interface:

	Create a brand new recipe.

	Clone or copy one from another project.

Brand New Recipe

Users have the option of creating a brand new recipe or copying/cloning one from an existing one.

To create a brand new recipe, click on the Project tab located on the left and find the Create Recipe button.

[image: ../_images/new-create.png]

This takes you to the following page.

[image: ../_images/new-recipe-button.png]

Copy or Clone

After clicking Copy the recipe is in your clipboard. Open the Recipe tab of any project to view your clipboard.

Once your clipboard has recipes, you can clone or copy them.

Cloning allows your recipes to stay up to date with an original source.

Note You can clone with Read Access and edit the cloned recipe with Write Access to the original.

A cloned recipe remains in sync with the original recipe that it was cloned from.
Clones cannot be changed and track the original recipe. A change to the original recipe will immediately be reflected in all the clones. The purpose of a cloned recipe is to ensure that a recipe is the same across multiple projects and individuals.

To paste the recipes as a clone, click the Paste as clone at the top of the Recipes tab.
[image: ../_images/paste-clone.png]

The second method to duplicate a recipe is to copy it. A copied recipe is a brand new recipe filled with the content from an existing recipe.
When a recipe is copied the provenance to the original recipe is not maintained. It becomes the responsibility of the author of the recipe to maintain the relevant information in the documentation of the recipe.

To paste the recipes as a new one, click the Paste as New at the top of the Recipes tab.
[image: ../_images/paste-new.png]

Interface Specification

The TOML definition file lists the parameters and allows the interface to be rendered.
Here is an example TOML definition file:

[reads]
value = "FASTQ Data Collection"
label = "Sequencing Reads"
type = "FASTQ"
source = "PROJECT"

[group]
label = "Plot features"
display = "DROPDOWN"
choices = [["default", "Default",], ["nogroup", "No Grouping",],]
value = "default"
help = "Turns on/off binning in the plots."

Each recipe parameter will have an automatic attribute called value that contains either the selected value (if the parameter is user supplied) or the default value found in the interface specification file.

the parameter name is foo, the default value is World!. The display field specifies the type of the HTML widget, the label and help fields describe the interface. The interface generated from this specification file looks like this:

[image: ../_images/interface-1.png]

Interface Builder

One of the useful features in our web interface is the interface builder.
We found building interfaces to be the most cumbersome process in the recipes workflow so we created a feature that would build the specification file for you.

[image: ../_images/recipe-builder.png]
[image: ../_images/recipe-interface.png]

Data Field

A “data” unit in the recipes app is a directory that may contain one or more (any number of files).

Data value

Each recipe parameter will have an automatic attribute called value that contains either the selected value (if the parameter is user supplied) or the first file from the table-of-contents. For data consisting of a single file one may use the value directly.

fastqc {{reads.value}}

Table of Contents

Each recipe parameter will have an automatically generated attribute called toc (table of contents) that returns the list of the file paths in the data.

The file paths are absolute paths. The toc can be used to automate the processing of data. For example
a data directory named reads contains several FASTQ files with .fq extensions. To run fastqc on each file that matches that
the recipe may use:

cat {{reads.toc}} | grep .fq | parallel fastqc {}

Data Source

When a recipe parameter indicates the source of the parameter as PROJECT it will be populated from the data in the project that matches the type.

[reads]
value = "FASTQ Data Collection"
label = "Sequencing Reads"
type = "FASTQ"
source = "PROJECT"

Only data that matches the tage FASTQ will be shown in the dropdown menu.

Data Types

Data types are labels (tags) attached to each data that help filtering them in dropdown menus. More than one data type may be listed as comma separated values.
The data types may be any word (though using well recognized names: BED, GFF is recommended).

Data that exists on a filesystem may be linked into the Biostar Engine from the command line.
This means that no copying/moving of data is required.
The only limitation is that of the filesystem.

Recipe Template

A recipe is a script that has template markers for filling in parameters. In the case for the foo variable above, we can access its value via:

echo 'Hello {{foo.value}}'

Recipes are using Django templates [https://docs.djangoproject.com/en/2.2/topics/templates/] and may contain Django template specific constructs.

When the recipe is run the template will be substituted according to the interface value entered by the user. If the default value is kept it will produce the script:

echo 'Hello World!'

Recipe Execution

Before executing the recipe the script template is rendered with the JSON data and is filled into the template.

template + TOML -> script

The script is then executed at the command line.

The recipe execution creates a Result objects.

Job Runner

The platform users an asynchronous task scheduler to execute the recipes in the background.
The site admins has control on how many workers are spawned and how many are used to run recipes.

Results

Results consists of all files and all the metadata created by the recipe as it is executed on the input data.

Each run of a recipe will generate a new result directory.
Users may inspect, investigate and download any of the files generated during the recipe run.
Additionally, users may copy a result file as new data input for another recipe.

Output Directory

Once the recipe runs a results directory is created that contains the following:

	the code for the recipe

	the standard out and error stream content

	all files created by the recipe

The results directory is a snapshot of all files generated when the recipe has been run, including the recipe itself.

Rerun Results

 Commands

Commands

Site administrator with shell access to the server can use these commands to interact with the recipes platform in an automated fashion.

Create a Project

Use the management command project to create a project from command line.

$ python manage.py project --help

usage: manage.py project [-h] --pid PID [--name NAME] [--info INFO] [--public]
 [--update] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--force-color]

Creates a project.

optional arguments:
 -h, --help show this help message and exit
 --pid PID Project id
 --name NAME Project name
 --info INFO File path or text of the project info
 --public Makes project public
 --update Updates the project selected by pid

 ...

Note: The owner of any project created from command line is an first admin user.

To create a sample project, run the command:

python manage.py project --name sample project --public --info "This is a sample" --pid sample

Granting Access

Adding collaborators can be done using the command line or the interface.

To add a user using command line use the managment command add_user:

$ python manage.py add_user --help --fname user_file.csv

usage: manage.py add_user [-h] [--fname FNAME] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--force-color]

Add users

optional arguments:
 -h, --help show this help message and exit
 --fname FNAME The CSV file with the users to be added. Must have
 headers: Name, Email

With a sample csv file user_list.csv that looks like :

user 1, user1@email
user 2, user2@email

You can run the following command using the file:

python manage.py add_user --fname user_list.csv

Upload Data

Command line options:

	Link a file directly from a hard drive

You can use the management command data to add or edit Data objects.

$ python manage.py data --help

usage: manage.py data [-h] --pid PID [--did DID] [--update] [--path PATH]
 [--text TEXT] [--name NAME] [--type TYPE] [--version]
 [-v {0,1,2,3}] [--settings SETTINGS]
 [--pythonpath PYTHONPATH] [--traceback] [--no-color]
 [--force-color]

Adds data to a project

optional arguments:
 -h, --help show this help message and exit
 --pid PID Select project by unique uid
 --did DID Select data by unique uid
 --update Update the table of content for data --did.
 --path PATH Path to the data to be added (file or directory)
 --text TEXT A file containing the description of the data
 --name NAME Sets the name of the data
 --type TYPE Sets the type of the data

Link a sample directory, /path/to/data/, to an existing project with the uid project_one:

$ python manage.py data --pid project_one --path /path/to/data/ --name New data

Create a Recipe

Creating a recipe can be by directly upload json and script template to a given recipe.

Use the recipe management command to directly add to a project.

$ python manage.py recipe --help

usage: manage.py recipe [-h] --pid PID --rid RID [--json JSON]
 [--template TEMPLATE] [--info INFO] [--name NAME]
 [--image IMAGE] [--update] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--force-color]

Adds recipe to a project

optional arguments:
 -h, --help show this help message and exit
 --pid PID Project id.
 --rid RID Recipe id.
 --json JSON Recipe json path.
 --template TEMPLATE Recipe template path (optional)
 --info INFO Recipe description (optional)
 --name NAME Recipe name
 --image IMAGE Recipe image path
 --update Updates the recipe

For example, the command below would add a recipe named New recipe to project with uid 1.

python manage.py recipe --pid 1 --name New recipe --json < interface file > --template < script template >

 API

API

Commands

Pull API:

$ python manage.py api pull --help

optional arguments:
 -h, --help show this help message and exit
 -r, --recipes Pull recipes of --pid
 --url URL Site url.
 --key KEY API key. Required to access private projects.
 --rid RID Recipe uid to dump.
 --pid PID Project uid to dump.
 --dir DIR Directory to store in.

Dump project from remote url (--url).
$ python manage.py api pull --pid tutorial --dir tmp/remote/projects/ --url URL

Dump recipes from remote url (--url)
$ python manage.py api pull --pid tutorial --dir tmp/remote/recipes/ --url URL --recipes

Push API:

$ python manage.py api push --help
optional arguments:
 -h, --help show this help message and exit
 -u, --url_from_json Extract url from conf file instead of --url.
 --url URL Site url.
 --key KEY API key. Required to access private projects.
 --rid RID Recipe uid to load.
 --pid PID Project uid to load.
 --dir DIR Directory with json files to load in bulk.
 --json JSON Project or recipe JSON file to load.

 # Load project tutorial from json file.
 $ python manage.py api push --json ../biostar-recipes/projects/tutorial.hjson

 # Load recipe jsons in --dir to project --pid. Upload to remote host with -u flag.
 $ python manage.py api push --pid tutorial --dir ../biostar-recipes/recipes/ -u --key API_KEY

Methods

Listing

GET /api/list/

List projects and recipes in a tab delimited fashion with columns: Project ID , Project Name, Recipe ID, Recipe Name, Privacy

Example

/api/list/ [https://www.bioinformatics.recipes/api/list/]

tutorial	Recipe Tutorials	environment	Environment Check	Public
tutorial	Recipe Tutorials	interface	Interface Elements	Public
tutorial	Recipe Tutorials	makefile	Makefile Example	Public
tutorial	Recipe Tutorials	rscript	R Script	Public
cookbook	Bioinformatics Cookbook	quality-check	Improve the quality of sequencing reads	Public
cookbook	Bioinformatics Cookbook	fastqc	Visualize FASTQ data quality	Public
cookbook	Bioinformatics Cookbook	pseudo-alignment	RNA-Seq Transcript Abundance Estimation	Public
cookbook	Bioinformatics Cookbook	augustus	Gene Prediction	Public

Project Information

GET /api/project/{id}/
PUT /api/project/{id}/

Parameters

	id: unique project ID

Example

/api/project/tutorials/ [https://www.bioinformatics.recipes/api/project/tutorials/]

{
 settings:
 {
 uid: tutorial
 name: Recipe Tutorials
 image: tutorial.png
 privacy: Public
 help:
 '''
 This project contains simple analyses that demonstrate the process
 of creating a **recipe**.

 Follow the **instructions,** investigate the **data** and **recipe code**
 to gain a deeper understanding of how recipes work.

 Read the step by step instructions in the [How to write recipes](https://github.com/biostars/biostar-recipes/blob/master/docs/how-to-write-recipes.md).
 '''
 id: 2
 project_uid: tutorial
 url: http://localhost:8000
 }
 recipes:
 [
 empty
 makefile
 starter
 interface
 hello-world
 environment
 rscript
]
}

Project Image

GET /api/project/image/{id}/
PUT /api/project/image/{id}/

Parameters

	id: unique project ID

Example

/api/project/image/tutorials/ [https://www.bioinformatics.recipes/api/project/image/tutorials/]

Image in response:

[image: ../_images/tutorial.png]20% center

Recipe Json

GET /api/recipe/json/{id}/
PUT /api/recipe/json/{id}/

Recipe JSON used to generate interface

Parameters

	id: Unique recipe ID

Fields in response

Fields associated with the recipe JSON

Example

/api/recipe/json/starter/ [https://www.bioinformatics.recipes/api/recipe/json/starter/]

{
 readlen:
 {
 label: Read Length
 display: INTEGER
 value: 250
 range:
 [
 70
 100000
]
 }
 instrument:
 {
 label: Select Instrument
 display: DROPDOWN
 choices:
 [
 [
 hiseq
 Illumina Hiseq
]
 [
 pacbio
 Pacific BioSciences Sequel
]
 [
 minion
 Oxford Nanopor Minion
]
]
 value: pacbio
 }
 reference:
 {
 label: Reference Genome
 display: DROPDOWN
 type: FASTA
 source: PROJECT
 value: Genome.fa
 }
 settings:
 {
 name: Starter Recipe
 image: starter.png
 help:
 '''
 This recipe can be a starting point for other recipes.
 # Help

 Use this recipe to create new recipes.
 '''
 id: 12
 uid: starter
 project_uid: tutorial
 url: http://localhost:8000
 }
}

Recipe Template

GET /api/recipe/template/{id}/
PUT /api/recipe/template/{id}/

Recipe template executed during analysis.

Parameters

	id: Unique recipe ID

Example

/api/recipe/template/starter/ [https://www.bioinformatics.recipes/api/recipe/template/starter/]

#
A starter recipe with examples.
#

#
You can fill in shell variables
#
READLEN=250

echo "Read length: $READLEN"

#
Substitute into content
#
echo "Referene genome: Genome.fa"

#
But you may also use Django Template constructs.
#

echo "Yes, it is Pacific Biosciences!"

#
Generate a table of content with all files in the job directory.
#
find . -name '*' > files.txt

#
Print the contents to the screen
#
echo "****** File List: files.txt ****"
cat files.txt
Make a nested directory
mkdir -p foo/bar
find . -name '*' > foo/bar/all.txt

Recipe Image

GET /api/recipe/image/{id}/
PUT /api/recipe/image/{id}/

Parameters

	id: Unique recipe ID

Example

api/recipe/image/starter/ [https://www.bioinformatics.recipes/api/recipe/template/starter/]

Image in response:

[image: ../_images/starter.jpeg]

Data Update

Adding data api docs.

 curl --form “@file=/Users/natay/Desktop/apps/biostar-central/SimpleWorkflowMNIST.ipynb” http://localhost:8000/api/data/data-1/

 Index

Index

 Biostar Central Documentation

Biostar Central Documentation

Bioinformatics Recipes

The documentation can be found at: https://bioinformatics-recipes.readthedocs.io/en/latest/index.html

Biostars Forum

 About Biostar

About Biostar

This site’s focus is bioinformatics, computational genomics and biological data analysis. We welcome posts that are:

	detailed and specific, written clearly and simply

No question is too trivial or too “newbie”.

But we recommend that you make use of the search services to see if your question has already been asked (perhaps even answered!) before you ask. But if you end up asking a question that has been asked before, that is fine too. Other users will hopefully edit in links to related or similar questions to help future visitors find their way.

Contact

To contact the site managers please email admin@biostars.org.

Licensing

Creative Commons License

All content on Biostar is licensed via the Creative Commons Attribution 4.0 International License [http://creativecommons.org/licenses/by/4.0/].

[image: ../_images/88x31.png]

This license requires that you attribute the information you find here either to the author and/or to the site, depending on the scope and presentation of the information.

Our community supports the fair use policy [http://en.wikipedia.org/wiki/Fair_use] when it comes to content created by users of this site.

Citing Biostar

	Parnell LD, Lindenbaum P, Shameer K, Dall’Olio GM, Swan DC, et al. 2011 BioStar: An Online Question & Answer Resource for the Bioinformatics Community. PLoS Comput Biol 7(10): e1002216. doi:10.1371/journal.pcbi.1002216 [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002216]

Source code

Biostar source code at biostar-central [https://github.com/ialbert/biostar-central] repository.

Bug reporting

Report bugs or feature requests in the issue tracker [https://github.com/ialbert/biostar-central/issues].

Copyright

Copyright by the BioStar team [https://github.com/ialbert/biostar-central/contributors].

 Biostar API

Biostar API

This is the documentation for Biostar API. If you have additional questions, or believe you have encountered a bug, don’t hesitate to post a question on Biostar.

General

All API responses are JSON.

Some API responses are cached. Polling for changes should be done sparingly in any case, and polling at a rate faster than once a minute (for semantically identical requests) is considered abusive.

A number of methods in the Biostar API accept dates as parameters and return dates as properties, the format of these dates is documented above. As a general rule, full dates use ISO 8601 and timestamps are in unix epoch time.

Methods

###Traffic

GET /api/traffic/

Number of post views over the last 60 min filtered by unique IPs.

Fields in response

	date: the current date, ISO 8601 format.

	post_views_last_60_min: number of post views over the last 60 min filtered by unique IPs.

	timestamp: the current date, unix epoch time format.

Example

/api/traffic/

{
 "date": "2014-05-29T14:59:55.788069",
 "post_views_last_60_min": 850,
 "timestamp": 1401375595
}

User

GET /api/user/{uid}/

General info about a user.

Parameters

	uid: the identifier of the user.

Fields in response

	date_joined: the date the user joined the website, ISO 8601 format.

	id: the identifier of the user, a number.

	joined_days_ago: the date the user joined the website, as the number of days ago.

	last_login: the date of the last login of the user, ISO 8601 format.

	name: the name of the user.

	vote_count: the number of votes given by the user.

Example

/api/user/23/

 "date_joined": "2010-01-18T21:43:55.253000+00:00",
 "id": 23,
 "joined_days_ago": 1614,
 "last_login": "2011-11-08T19:37:21.753000+00:00",
 "name": "Giovanni M Dall'Olio",
 "vote_count": 37
}

Post

GET /api/post/{id}/

General info about a post.

Parameters

	id: the identifier of the post, a number.

Fields in response

	answer_count: number of answers.

	author: author name.

	author_id: author’s identifier, a number.

	book_count: number of bookmarks.

	comment_count: number of comments.

	creation_date: creation date, ISO 8601 format.

	has_accepted: true if the question has an accepted answer, boolean.

	id: identifier of the post, a number.

	lastedit_date: date of last edit, ISO 8601 format.

	lastedit_user_id: user who last edited this post.

	parent_id: identifier of the parent post.

	rank: rank, a number.

	reply_count: number of replies.

	root_id: identifier of the root post.

	status: status message.

	status_id: status’ identifier, a number.

	subs_count: number of subscribers following this post.

	tag_val: tags.

	thread_score: thread’s score.

	title: title.

	type: type of post.

	type_id: type’s identifier for this post.

	url: url.

	view_count: number of views.

	vote_count: number of votes.

	xhtml: content.

Example
/api/post/25/

{
 "answer_count": 2,
 "author": "Gue Su",
 "author_id": 18,
 "book_count": 0,
 "comment_count": 0,
 "creation_date": "2009-12-01T20:57:35.300000+00:00",
 "has_accepted": false,
 "id": 25,
 "lastedit_date": "2009-12-01T20:57:35.300000+00:00",
 "lastedit_user_id": 18,
 "parent_id": 24,
 "rank": 0.0,
 "reply_count": 0,
 "root_id": 24,
 "status": "Open",
 "status_id": 1,
 "subs_count": 0,
 "tag_val": "",
 "thread_score": 0,
 "title": "A: How To Set Shrimp Parameters For Best Sensitivity With 35Bp Colorspace Data?",
 "type": "Answer",
 "type_id": 1,
 "url": "http://localhost:8080/p/24/#25",
 "view_count": 0,
 "vote_count": 2,
 "xhtml": "
I just read the SHRiMP manual again, but I think that their explanation about -M option may not be enough to answer your question. I usually use the \"seed\" mode by using -s, -n, and -w and the option -M is a new feature of the version 1.3.1, which I have never tried before.

\n\n
I recommend for you to use the \"seed\" mode--the default would be good, but please adjust the -s option if you want more sensitivity. Always fast speed compensates sensitivity and the -M option seems to exist for this purpose.

\n\n
Hope my message to be helpful for your project.

\n"
}

Vote

GET /api/vote/{id}/

General info about a vote.

Parameters

	id: the identifier of the vote, a number.

Fields in response

	author: author name.

	author_id: author’s identifier, a number.

	date: date of the vote, ISO 8601 format.

	id: identifier of the vote, a number.

	post_id: identifier of the voted post.

	type: type of vote.

	type_id: type’s identifier for this vote.

Example
/api/vote/21/

{
 "author": "Zhaorong",
 "author_id": 14,
 "date": "2014-04-29T15:02:17.740000+00:00",
 "id": 21,
 "post_id": 26,
 "type": "Upvote",
 "type_id": 0
}

Statistics on the Nth day

GET /api/stats/day/{day}/

Statistics as of the Nth day after day-0 (the day of the first ever post).

Parameters

	day: number of days after day-0, a number.

Fields in response

	answers : total number of answers as of the given day.

	comments: total number of comments as of the given day.

	date: date, ISO 8601 format.

	new_posts: number of new posts in the given day.

	new_users: number of new users in the given day.

	new_votes: number of new votes in the given day.

	questions: total number of questions as of the given day.

	timestamp: date, unix epoch time format.

	toplevel: total number of toplevel post as of the given day.

	users: total number of users as of the given day.

	votes: total number of votes as of the given day.

Example

/api/stats/day/5/

{
 "answers": 6,
 "comments": 0,
 "date": "2009-10-05T00:00:00",
 "new_posts": [
 10,
 11,
 12
],
 "new_users": [
 10,
 11
],
 "new_votes": [],
 "questions": 6,
 "timestamp": 1254700800,
 "toplevel": 6,
 "users": 10,
 "votes": 0
}

Statistics on a date

GET /api/stats/date/{year}/{month}/{day}/

Statistics as of the given date.

Parameters

	year: a number, 4 digits.

	month: a number, 2 digits.

	day: a number, 2 digits.

Fields in response

	answers: total number of answers as of the given date.

	comments: total number of comments as of the given date.

	date: date, ISO 8601 format.

	new_posts: number of new posts in the given date.

	new_users: number of new users in the given date.

	new_votes: number of new votes in the given date.

	questions: total number of questions as of the given date.

	timestamp: date, unix epoch time format.

	toplevel: total number of toplevel post as of the given date.

	users: total number of users as of the given date.

	votes: total number of votes as of the given date.

Example
/api/stats/date/2009/10/06/

{
 "answers": 9,
 "comments": 0,
 "date": "2009-10-06T00:00:00",
 "new_posts": [
 13,
 14,
 15,
 16
],
 "new_users": [
 12,
 13
],
 "new_votes": [],
 "questions": 7,
 "timestamp": 1254787200,
 "toplevel": 7,
 "users": 12,
 "votes": 0
}

Tags List

POST /api/tags/list/

Return a list of tags with corresponding counts of posts. Can also pass down a time range.

Parameters

	data: a file listing the tags, with

	months: 6

Given

curl -X POST -F "tags=@/Users/natay/Desktop/apps/biostar-central/tags.txt" http://localhost:8000/api/tags/list/?trange=year

Returns

{
 "tag1": {
 "answer_count": 0,
 "comment_count": 0,
 "total": 21
 },
 "tag2": {
 "answer_count": 0,
 "comment_count": 0,
 "total": 20
 }
}

 How to ask questions

How to ask questions

	how to ask a better question

How to modify this page

	Fork the repository at: https://github.com/ialbert/biostar-central

	Navigate to docs/forum/ask.md in your fork and identify the page you want to change

	Edit the page via GitHub or on your system then commit to your fork.

	Generate a pull request to the upstream.

 Frequently Asked Questions

Frequently Asked Questions

Contact

Contact email: admin@biostars.org

Common Questions

	How to convert Gene Symbols into Entrez ID [https://www.biostars.org/p/9461782/]

Best of Biostar

	What Are The Most Common Stupid Mistakes In Bioinformatics? [https://www.biostars.org/p/7126/]

	Bioinformatics cartoon [https://www.biostars.org/p/16049/]

Support for Biostar

Biostar has been developed as an open source software with the MIT licence thanks to awards from the following
organizations:

	US Fish and Wildlife Service Cooperative Agreement [https://www.fws.gov/grants/atc.html]: award F16AC01007

	National Institutes of Health (NIH) [http://www.nih.gov/], grant NIH 5R25HG006243-02

	The Pennsylvania State University [http://www.psu.edu/]

 Documentation for Customizing the Biostars Forum

Documentation for Customizing the Biostars Forum

 Documentation for Biostars Forum

Documentation for Biostars Forum

Here are steps to running and deploying the forum from scratch.

	Create a virtual environment and clone most recent version of the forum.

	Install dependencies.

	Run migrations and tests.

	Start a local server.

1. Create a virtual environment and clone the repo.

Create a virtual environment by first downloading miniconda at https://docs.conda.io/en/latest/miniconda.html.

After downloading the installation file, run the command (replace installation_file.sh with your installation file) :

$ bash installation_file.sh

Once miniconda has been installed, create a virtual enviroment called engine.

$ conda create -n engine python=3.7

Start the virtual enviorment by entering the command:

$ conda activate engine

Clone or pull the most recent version of the forum by executing:

 git clone https://github.com/ialbert/biostar-central.git # Clone a new branch

 git pull https://github.com/ialbert/biostar-central.git # Pull into an exisiting

2. Install dependencies.

Activate the engine virtual enviorment.

$ conda activate engine

Enter the biostar-central directory to install dependencies and requirements into the virtual enviorment.

Execute the following to install python requirements:

pip install -r conf/pip_requirements.txt # Install python requirements.

Add the following conda channels:

conda config --add channels r
conda config --add channels conda-forge
conda config --add channels bioconda

Execute the following to install all anaconda requirements:

conda install --file conf/conda_requirements.txt # Install conda requirements.

After dependencies have been installed, a migration needs to be made to create the database collect static files.

3. Run migrations and tests.

Activate the engine virtual enviorment.

conda activate engine

Migrate the forum app by executing the command:

python manage.py migrate --settings biostar.forum.settings

Collect static files for the forum app by executing the command:

python manage.py collectstatic --noinput -v 0 --settings biostar.forum.settings

There is a Makefile command that migrates and collects static files in one shot.

make forum init # Migrate and collect static files.

A database has now been created and the static files can be found in biostar-central/export/static/

To ensure installation and migration was successful, run a test by executing the command:

make forum test # Run tests.

4. Start a local server

Activate the engine virtual enviorment.

$ conda activate engine

Enter the command make forum serve to start a local server.

make forum serve # Start local server

The site is now available at http://127.0.0.1:8000/.

 Moderator guidelines

Moderator guidelines

Thank you for being a moderator. Your contributions and participation on Biostar is being recognized by providing you with extended rights over the site’s operation.

Contacting other moderators

A private Slack Channel is used as the primary means of communicating with other moderators.

Participation is optional. As a moderator you are welcome to join at any time.

The Moderator Log page has an invite to the Biostar Moderator Slack Channel.

Moderator rights

Moderators may:

	Edit other readers’ posts (for formatting purposes only!)

	Delete and restore content

	Suspend and reinstate users

	Reorganize content on the site (answers/comments)

	Bump posts to higher visibility

	Mark posts as off-topic

	Mark posts as spam.

Please be generous with your powers and use them only when necessary and in a minimally obtrusive manner. No action is destructive and every action may be reverted.

Editing posts

Moderators may only edit a post to:

	fix a typo in a command, a URL or an image

	format code or content to become more readable

The author of the post should be responsible for the readability and tone of the post.

Editing a post generates a diff. The diff is not visible to the site’s users, it is stored in a file as a log, and would be used only to resolve potential disagreements with regards to what a post originally contained. These diffs may be periodically removed and are not archived long term.

Deleting posts

Posts that break the rules of civil communication will be deleted. Users that submit such posts may be suspended or banned with no prior notice.

Post moderation

Every moderation action generates a log entry in the moderation log.

	Delete - marks the post as deleted, only mods and the author can see the post

	Open - removes deleted flag from a post

	Bump - sets the timestamp to be among the first ten posts

	Off-topic - adds the offtopic tag and creates a comment stating that the post if off topic.

	Spam - marks post as spam, suspends post author

	Not spam - unmarks post from spam, reinstates post author

Commercial posts

Users may post commercially motivated posts to the Forum section as long as the topic aligns with the main focus of this
site.

Marking post as spam

Marking a post as spam suspends the author of the post.

Off topic content

Try to be generous in your assesment on what constitutes “off-topic” content.

Bioinformatics is a broad field, often it is hard to tell what is a bioinformatics and what is “pure programming” or “statistics”. Usually it is effective and more constructive to point readers to the appropriate source instead of informing them that the post is off topic.

Marking a post off topic generates a comment (and a notification to the user).

Off topic content may be periodically removed.

User reputation

The number next to a user’s name is the sum of upvotes and accepted answers that user has collected.

Becoming a moderator

Active users above a certain reputation threshold are periodically promoted to
moderators.

You may also self nominate and ask for moderation rights or suggest good
candidates on the Slack channel. Inactive users that do not visit the site for
extended periods of time may lose their moderation rights.

How to modify this page

	Fork the repository at: https://github.com/ialbert/biostar-central

	Navigate to docs/forum/mods.md in your fork.

	Edit the page via GitHub or on your system then commit to your fork.

	Generate a pull request to the upstream.

 Policy

Policy

User agreement

Be well, do good work and keep in touch.

Privay policy

We do not give out or sell your information (including name and email address)
to anyone.

Cookies

The site will set session cookies whenever you visit the site. If you do not
intend to ever log in, you may deny this cookie, but you cannot log in without
it. Cookies may be also set when you log in, to be able to display new posts
and messages that you may have received. Cookies may also be set by Google or
other companies that help us aggregate visitor statistics, traffic and other
information.

 RSS Feeds

RSS Feeds

Standard feeds:

	Latest Posts - latest posts (all posts)

	New Questions - latest questions

	New Job postings - latest jobs

Advanced usage, multiple sources can be added to a feed.

	Follow posts of different types, posts of certain types: /feeds/type/job+blog

	Follow multiple posts, answers and comments attached to the specified posts: /feeds/post/2+8+10

	Follow multiple tags, posts that are tagged with one or more tags: feeds/tag/galaxy+bwa+tutorial

	Follow multiple users a feed to posts by these users: /feeds/user/2+8+10

 Additional commands

Additional commands

The Makefile included with the engine contains additional commands.

Test the software:

make test

Re-initialize the database:

make reset

Serve the current site:

make serve

Initialize the example recipes from the biostar-recipe repository.

make recipes

Run all tests:

make test

Back up the data

make backup

Project API:

$ python manage.py api project --help

optional arguments:
 -h, --help show this help message and exit
 -l, --load Load to url from a directory. Load to database if
 --url is not set.
 -d, --dump Dump from a url to directory. Dump from database if
 --url is not set.
 -u, --url_from_json Extract url from conf file instead of --url. Only
 works when --load(-l) flag is set.
 --url URL Site url.
 --key KEY API key. Required to access private projects.
 -a, --add_data Add data found in conf file to local database.
 --privacy PRIVACY Privacy of project, only used when creating.
 --uid UID Project uid to load from or dump to.
 --dir DIR Directory to store/load project from.
 --list Show a project list.
 --data_root DATA_ROOT
 Root directory to data found in conf file.
 --json JSON JSON file path relative to --dir to get conf from ONLY
 when --load flag is set.

Dump project from remote url using --dump (-d) flag.
$ python manage.py api project -d --uid tutorial --url https://www.bioinformatics.recipes

Load project to remote url in json file using --load (-l)
and --url_from_json (-u) flag.

$ python manage.py api project -l -u --json tutorial.hjson --key API_KEY

Data API:

$ python manage.py api data --help
optional arguments:
 -h, --help show this help message and exit
 --path PATH Path to data.
 --pid PID Project uid to create data in.
 --uid UID Data uid to load or update.
 --text TEXT A file containing the description of the data
 --name NAME Sets the name of the data
 --type TYPE Sets the type of the data
 --list Show a data list.
 --update_toc Update table of contents for data --uid.

Create new data object pointing to --path in project.
$ python manage.py api data --pid tutorial --path DATA

Update the table of content for data --uid
$ python manage.py api data --uid 32dd2w --update_toc

Recipe API:

$ python manage.py api recipe --help
optional arguments:
 -h, --help show this help message and exit
 -l, --load Load to url from a directory. Load to database if --url
 is not set.
 -d, --dump Dump from a url to directory. Dump from database if
 --url is not set.
 -u, --url_from_json Extract url from conf file instead of --url. Only works
 when --load(-l) flag is set.
 --url URL Site url.
 --key KEY API key. Required to access private projects.
 --jobs Also creates a queued job for the recipe
 --uid UID Recipe uid to load or dump.
 --pid PID Project uid to load from or dump to.
 --dir DIR Directory to store/load recipe from.
 --list Show a recipe list.
 --json JSON JSON file path relative to --dir to get conf from ONLY
 when --load flag is set.

Dump all recipes in project --pid from remote host.
$ python manage.py api recipe -d --pid tutorial --dir tutorial --url https://www.bioinformatics.recipes

Load all recipes in project directory --dir to remote host.
$ python manage.py api recipe -l -u --dir tutorial --key API_KEY

Job API:

$ python manage.py api job --help

optional arguments:
 -h, --help show this help message and exit
 --next Runs the oldest queued job
 --id ID Runs job specified by id.
 --uid UID Runs job specified by uid.
 --show_script Shows the script.
 --show_json Shows the JSON for the job.
 --show_template Shows the template for the job.
 --show_command Shows the command executed for the job.
 --use_json USE_JSON Override the JSON with this file.
 --use_template USE_TEMPLATE
 Override the TEMPLATE with this file.
 --list Show a job list

Run a job overriding json
$ python manage.py api job --uid 332eqwd --use_json JSON_FILE

 Deploying the Biostar Engine

Deploying the Biostar Engine

The site is built with Django therefore the official Django documentation applies to maintaining and deploying the site:

	https://docs.djangoproject.com/

Running jobs

A recipe submitted for execution is called a job.

When the job is run the recipe parameters are applied onto recipe template to produce the script that gets executed. This transformation takes place right before executing the job.

Jobs can be executed as commands. See the job command for details:

python manage.py job --help

The command has number of parameters that facilitate job management and recipe development.
For example:

python manage.py job --list

will list all the jobs in the system. Other flags that allow users to investigate and override the behaviors.

python manage.py job --id 4 --show_script

will print the script for job 4 that is to be executed to the command line. Other flags such as -use_template and -use_json allows users to override the data or template loaded into the job.
This can be useful when developing new recipes.

Another handy command:

python manage.py job --next

will execute the next queued job. The job runner may be run periodically with cron.

Automatic job spooling

The Biostar Engine supports uwsgi. When deployed through
uwsgi jobs are queued and run automatically through the uwsgi spooler. See the uwsgi documentation for details on how to control and customize that process.

	https://uwsgi-docs.readthedocs.io/en/latest/

[uwsgi]: <https://uwsgi-docs.readthedocs.io/en/latest/

Security consideration

Note: The site is designed to execute scripts on a remote server. In addition the site
allows users with moderator rights may change the content of these scripts.

It is extremely important to monitor, restrict and guard access to all
accounts with moderator privileges!

_images/new-project.png
Public Projects & Private Projects © New Project

© No projects found. ‘

_images/new-recipe-button.png
» Run

© Information

3 Results (3)

<[> Code

2 Interface

&, Download

@ Visualize FASTQ data quality

Generates a FastQC report on asingle file or a data collection. For more information see:

3results » updated 2 hours ago by Admin User

Generates a FastQC report on asingle file or a data collection. For more information see:

« Bioinformatics Data Analysis online course
« Biostar Handbook for system setup and other information.

& Copyrecipe [# Editdescription W Deleterecipe

_images/manage-access-button.png
private Updated just now by Bioinformatics Admin

[# Edit Project 22 Manage Access W Delete Project

_images/new-create.png
Project information goes here.

Project owned by Admin User » updated 2 hours ago by Admin User

[Edit project & AddData 12 Manage access W Delete project

_images/project-create-form.png
Project Title

Project Name

What do youwant to call the project

Project Image

Choose File | Nofile chosen

Optional image to recognize the project by (square image, no more than 500px)
Project Rank

100

Used inord

g project lists on the page
Project Description

project description

A detailed explanation of the project (markdown OK).

5

_images/project-info-view.png
© Project B 3Data ©% 7 Recipes Lul 9 Results

Project Information Owner Access

This project contains simple recipes that demonstrate the process of creating a recipe

Follow the instructions, investigate the data and recipe code to gain a deeper understanding of
how recipes work.

Public Project owned by Bioinformatics Admin e Updated 4 weeks ago by Bioinformatics
Admin

[# Edit Project *&: Manage Access B Delete Project

_images/paste-clone.png
v Clipboard contains 1 recipe. Paste as Clone or E3 Cancel Paste

A cloned recipe remains synchronized with the original recipe.

_images/paste-new.png
= CIipboard contains 1recipe. Paste as Clone or E3 Cancel Paste

A cloned recipe remains synchronized with the original recipe.

_images/project-privacy-label.png
roject owned by Bioinformatics Admin e Updated 4 weeks ago by Bioinformatics Admin

_images/project-recipe-write-msg.png
© You need write access to the original recipe to edit.

_images/interface-1.png
Generated Interface

SRR519926

An SRA run number

_images/interface-state1.png
Run: & Short Read Alighment

v Authorized

The recipe demonstrates the use of different short read aligners.

Accession number for the reference genome:

AF086833

Must be an NCBI accession number

SRA run number:

SRR1972739

Must be an SRR run id number

_images/authorization-valid.png
Run: & Evaluate SNP Calling Accuracy

v Authorized
This recipe evaluates SNP callers on a the syndip data.

Chromosomal Range:

1000000
The range of the data to be extracted

_images/data-type.png
B Qiime2 Test Data Sample Sheet B Copy or W Delete

3.4KB reated 4 weeks ago by Aswathy

This is a sample sheet for a Qiime2 pipeline.

_images/interface-state2.png
Run: & Short Read Alignment (with subsampling)

v Authorized

The recipe demonstrates the use of different short read aligners on a random sub-sampling of the input reads.

Accession number for the reference genome:

AF086833

Must be an NCBI accession number

SRA run number:

SRR1972739

Must be an SRR run id number

Subsampling (percent):

50

Enter a percentage for random sampling.

_images/project-write-msg.png
You need to perform that action.

nav.xhtml

 Table of Contents

 		
 Bioinformatics Recipes: Reproducible Data Analysis

 		
 FAQ - Frequently Asked Questions

 		
 Answers to reviewers

 		
 Who can run a recipe?

 		
 What is an authorized recipe?

 		
 Who is a trusted user?

 		
 How do I become a trusted user?

 		
 How can I tell if I am a trusted user?

 		
 Will this software run on my machine?

 		
 Is the software useful in bioinformatics education?

 		
 The software seems conceptually most similar to Galaxy, but how does it differ?

 		
 What are the advantages of the recipes over Galaxy?

 		
 If you have a local Galaxy server and a local Recipe instance - what functional differences do users see?

 		
 How does the performance compare?

 		
 This application is designed to serve individual groups, but on what scale?

 		
 What are the minimum requirements for installing the web application?

 		
 Where (and how) recipes actually run when you execute them through the web application?

 		
 How are new recipes added to the system?

 		
 How do you standardise the way the recipes are created?

 		
 What is a “cloned” recipe?

 		
 What is a “copied” recipe?

 		
 What conventions should be followed? How should they be documented? What is the minimum amount of provenance that the scripts should produce? How should that be presented to the users?

 		
 Installation

 		
 Running a Demo

 		
 Initialize Recipes

 		
 Start Server

 		
 Customize Settings

 		
 Directory Structure

 		
 Deploying Site

 		
 Projects

 		
 Project Privacy

 		
 Create a Project

 		
 Project Access

 		
 Granting Access

 		
 Data

 		
 Data Types

 		
 Upload Data

 		
 Import Directory

 		
 Recipes

 		
 Recipe Ingredients

 		
 Create a Recipe

 		
 Brand New Recipe

 		
 Copy or Clone

 		
 Interface Specification

 		
 Interface Builder

 		
 Data Field

 		
 Data value

 		
 Table of Contents

 		
 Data Source

 		
 Data Types

 		
 Recipe Template

 		
 Recipe Execution

 		
 Job Runner

 		
 Results

 		
 Output Directory

 		
 Rerun Results

 		
 Commands

 		
 Create a Project

 		
 Granting Access

 		
 Upload Data

 		
 Create a Recipe

 		
 API

 		
 Commands

 		
 Methods

 		
 Listing

 		
 Project Information

 		
 Project Image

 		
 Recipe Json

 		
 Recipe Template

 		
 Recipe Image

 		
 Data Update

_images/88x31.png

_images/results.png
user

Q Search results

‘ Filtering for : user D Clear

Q Aswathy
@9c88dbe5

. mrmuchow
@c8ea3d13

. testing

@1838f658
‘ Natay Aberra

@8b6c9d7d

No Access

No Access

No Access

No Access

_images/authorization-pending.png
Run: £ Evaluate SNP Calling Accuracy

¥ Pending authorization
This recipe evaluates SNP callers on a the syndip data.

Chromosomal Range:

1000000

The range of the data to be extracted

{ @ This recipe needs to be audited by an admin before it can be run.

_images/starter.jpeg

_images/recipe-builder.png
Recipe Interface Builder

Click the buttons on the right to create new fields.

Sequencing Reads:
A100_V4_10K_1_soilfastq.gz -

This should be a collection of FASTQ files. Required data type: FASTQ

Plot features:

Default -

Turns on/off binningin the plots.

¥/ Summarize with MultiQC
Check this to produce a single plot with all data overlaid.

Run C' Cancel

B 8 8 8 888 8

Add text field
Add float field
Add data field
Add checkbox
‘Add dropdown
Add upload field
Add integer field

Add radio button

_images/recipe-interface.png
